CMSGu2017-01

Mauritian Computer Emergency Response Team

Enhancing Cyber Security in Mauritius

Guideline on Cyber Threat Intelligence

National Computer Board Mauritius

> June 2017 Issue No. 1

Table of Contents

1.0 Introduction
1.1 Purpose and Scope4
1.2 Audience4
1.3 Document Structure
2.0 Background
3.0 Cyber Threat Intelligence Explained
3.1 Adversary based
3.2 Risk focused
3.3 Process oriented
3.4 Tailored for diverse consumers7
4.0 Cyber Threat Intelligence Sources
4.1 Internal
4.2 Community10
4.3 External11
5.0 Cyber Threat Information Sharing Rules12
5.1 Threat Information12
5.2 Information Sensitivity and Privacy
5.3 Sharing Designations
5.4 Cyber Threat Information Sharing and Tracking Procedures20
6.0 Conclusion
7.0 References

DISCLAIMER: This guideline is provided "as is" for informational purposes only. Information in this guideline, including references, is subject to change without notice. The products mentioned herein are the trademarks of their respective owners.

1.0 Introduction

1.1 Purpose and Scope

The purpose of this guideline is to give security and business staff an insight on the collection and sharing of cyber threat information.

1.2 Audience

The targeted audience for this document includes security and business staff involved in the collection, analysis and dissemination of cyber threat information.

1.3 Document Structure

This document is organised into the following sections:

Section 1 gives an outline of the document's content, the targeted audience and the document's structure.

Section 2 presents a background on sophisticated, well-funded attacks.

Section 3 explains Cyber Threat Intelligence.

Section 4 discusses the different Cyber Threat Intelligence sources.

Section 5 presents the cyber threat information sharing rules.

Section 6 concludes the document.

Section 7 comprises a list of references that have been used in this document.

2.0 Background

A decade ago, IT security professionals were primarily worried about mass attacks. Today these are regarded as secondary threats that only generate "noise" on the network. Security vendors and enterprises normally defend against them successfully by analyzing the first instances discovered and quickly disseminating signatures and indicators of compromise (IOCs). A few initial victims suffer, but almost everyone can detect and block the attacks using appropriate tools. Today, the most serious data breaches and disruptions result from well-planned, complex attacks that target specific companies or industries. Sophisticated, well-funded attackers make detection difficult by:

- Utilizing social engineering techniques and multiphase campaigns that cannot be identified by simple threat indicators or blocked by frontline defenses.
- Constantly adapting their tools, tactics, and procedures to elude even advanced cybersecurity measures.

Criminals have improved their tactics by systematically targeting their victims' most valuable information assets and business systems.

3.0 Cyber Threat Intelligence Explained

Cyber Threat Intelligence is the collection of information about adversaries and their motivation, intentions and methods, analyzing and sharing this information with security and business staff at all levels in order to protect their critical information.

CTI can be divided into four main categories:

3.1 Adversary based

The types of intelligence we encounter in books, movies, and news reports focus on specific adversaries. Military and political intelligence activities are directed at enemies of the nation. Law enforcement and anti-terrorism intelligence programs probe criminal gangs and terrorist organizations. Sports teams scout upcoming opponents. Competitive analysts compile information on the products, pricing, and plans of rival businesses.

CTI activities are also organized around specific adversaries, especially cybercriminals, cyber espionage agents, and hacktivists. The enterprise that knows its opponents can optimize its defenses to protect against those adversaries and the attacks they employ.

3.2 Risk focused

CTI programs are based on an assessment of the information assets that the enterprise needs to protect. These assets include data, documents, and intellectual property (such as customer databases and engineering drawings), and computing resources (such as websites, applications, source code, and networks).

3.3 Process oriented

From spying, to law enforcement, to competitive analysis, all successful intelligence programs follow the same basic process (Figure 1-1).

Figure 1 Steps in an intelligence process

3.4 Tailored for diverse consumers

Another key characteristic of cyber threat intelligence is that it does not stop at distributing raw threat data. Data and analysis must be tailored for each type of intelligence consumer. For example, in respect to the same alert:

- SOC analysts may want just enough context to know if the alert is worth escalating to the IR team.
- The IR team may want very detailed context to determine if the alert is related to other events observed on the network.
- The CISO might want an evaluation of the risk to the organization and a summary connecting the alert to data breaches recently reported in the press.

4.0 Cyber Threat Intelligence Sources

CTI sources can be split in to the following three categories:

4.1 Internal

The internal threat category encompasses any CTI that is collected from within the organization. This can included reported information from security tools such as firewalls, intrusion prevention systems (IPS) and host security systems like anti-virus. A valuable source of threat intelligence information comes from computer forensic analysis. The analysis can yield intelligence that is not readily visible and may be very useful in detection of other attacks. Analysis can yield intelligence to identify tools or TTP which are harder for attackers to change compared to things like IP addresses and domain names.

Source	Examples		
Network Data Sources			
Router, firewall, remote services	Timestamp		
(such as remote login or remote	Source and destination IP address		
command execution), and	TCP/UDP port numbers		
Dynamic Host Configuration	Media Access Control (MAC) address		
Protocol (DHCP) server logs	Hostname		
	Action (deny/allow)		
	Status code		
	Other protocol information		
Diagnostic and monitoring tools	Timestamp		
(network intrusion detection and	IP address, port, and other protocol		
prevention system, packet	information		
capture & protocol analysis)	Packet payloads		
	Applicationspecific information		
	Type of attack (e.g., SQL injection, buffer		
	overflow)		
	Targeted vulnerability		
	Attack status (success/fail/blocked)		

Host Data Sources		
Operating system and	Bound and established network connections	
application configuration settings,	and ports	
states, and logs	Processes and threads	
	Registry settings	
	Configuration file entries	
	Software version and patch level information	
	Hardware information	
	User and groups	
	File attributes (e.g., name, hash value,	
	permissions, timestamp, size)	
	File access	
	System events (e.g., startup, shutdown,	
	failures)	
	Command history	
Antivirus products	Hostname	
	IP address	
	MAC address	
	Malware name	
	Malware type (e.g., virus, hacking tool,	
	spyware, remote access)	
	File name	
	File location (i.e., path)	
	File hash	
	Action taken (e.g., quarantine, clean, rename,	
	delete)	
Web browsers	Browser histories and caches including:	
	Sites visited	
	Objects downloaded	
	Objects uploaded	
	• Extensions installed or enabled	
	• Cookies	

Other Da	ta Sources		
Security Information and Event	Summary reports synthesized from a variety		
Management (SIEM)	of data sources (e.g.,		
	operating system, application, and network		
	logs)		
Email systems	Email messages:		
	Email header content		
	Sender/recipient email address		
	• Subject line		
	Routing information		
	Attachments		
	URLs		
	Embedded graphics		
Help desk ticketing systems,	Analysis reports and observations regarding:		
incident management/tracking	• TTPs		
system, and people from within	Campaigns		
the organization	Affiliations		
	• Motives		
	• Exploit code and tools		
	Response and mitigation strategies		
	• Recommended courses of action		
	User screen captures (e.g., error messages or		
	dialog boxes)		
Forensic toolkits and dynamic	Malware samples		
and/or virtual execution	System artifacts (network, file system,		
environments	memory)		

 Table 1 Selected Internal Information Sources

4.2 Community

The community category includes any CTI shared via a trusted relationship with multiple members with a shared interest. This can be an informal group with member organizations that are in the same industry sector or that have other common interests. There are formal community groups such as the Information Sharing and Analysis Centers (ISACs) organized under the National Council of ISACs. ISACs are formed for specific sectors such as higher education or financial services. There are over a dozen ISACs under the National Council of ISACs.

4.3 External

The external category includes CTI from sources outside an organization and not part of a community group. There are two types of external sources. The first is public sources. Public sources are available to anyone and generally there is no cost associated with access. While public feeds can be available at no cost, there can be problems. There can be possible problems with volunteered data as efforts to collect these will always have an issue with guaranteed data quality.

5.0 Cyber Threat Information Sharing Rules

5.1 Threat Information

Threat information is any information related to a threat that might help an organization protect itself against a threat or detect the activities of an actor. Major types of threat information include the following:

Indicators

Indicators are technical artifacts or observables that suggest an attack is imminent or is currently underway or that a compromise may have already occurred. Indicators can be used to detect and defend against potential threats. Examples of indicators include the Internet Protocol (IP) address of a suspected command and control server, a suspicious Domain Name System (DNS) domain name, a Uniform Resource Locator (URL) that references malicious content, a file hash for a malicious executable, or the subject line text of a malicious email message.

Tactics, techniques, and procedures (TTPs)

TTPs describe the behavior of an actor. Tactics are high-level descriptions of behavior, techniques are detailed descriptions of behavior in the context of a tactic, and procedures are even lower-level, highly detailed descriptions in the context of a technique. TTPs could describe an actor's tendency to use a specific malware variant, order of operations, attack tool, delivery mechanism (e.g., phishing or watering hole attack), or exploit.

Security alerts

Security alerts also known as advisories, bulletins, and vulnerability notes, are brief, usually human-readable, technical notifications regarding current vulnerabilities, exploits, and other security issues. Security alerts originate from sources such as the United States Computer Emergency Readiness Team (US-CERT), Information Sharing and Analysis Centers (ISACs), the National Vulnerability Database (NVD), Product Security Incident Response Teams (PSIRTs), commercial security service providers, and security researchers.

Threat intelligence reports

Threat intelligence reports are generally prose documents that describe TTPs, actors, types of systems and information being targeted, and other threat-related information that provides greater situational awareness to an organization. Threat intelligence is threat information that

has been aggregated, transformed, analyzed, interpreted, or enriched to provide the necessary context for decision-making processes.

Tool configurations

Tool configurations are recommendations for setting up and using tools (mechanisms) that support the automated collection, exchange, processing, analysis, and use of threat information. For example, tool configuration information could consist of instructions on how to install and use a rootkit detection and removal utility, or how to create and customize intrusion detection signatures, router access control lists (ACLs), firewall rules, or web filter configuration files.

5.2 Information Sensitivity and Privacy

Many organizations handle information that, by regulation, law, or contractual obligation, requires protection. Organizations should identify and properly protect such information. An organization's legal team, privacy officers, auditors, and experts familiar with the various regulatory frameworks should be consulted when developing procedures for identifying and protecting sensitive information.

From a privacy perspective, one of the key challenges with threat information sharing is the potential for disclosure of Personally Identifiable Information (PII). Education and awareness activities are critical to ensure that individuals responsible for handling threat information understand how to recognize and safeguard PII. Internal sharing of information may result in disclosure of PII to people who, by virtue of their job functions, would not typically have routine access to such information.

An organization should have information sharing policies and procedures in place that provide guidance for the handling of PII. These policies and procedures should include steps for identifying incident data types that are likely to contain PII. Policies should describe proper safeguards for managing the privacy risks associated with sharing such data. A common practice is to focus on the exchange of indicators to the maximum extent possible. Some indicators, such as file hashes, network port numbers, registry key values, and other data elements, are largely free of PII. Where PII is identified, however, organizations should redact fields containing PII that are not relevant to investigating or addressing threats before sharing. The type and degree of protection applied should be based on the intended use of the **Guideline on Cyber Threat Intelligence**

information, the sensitivity of the information, and the intended recipient. Where practical, organizations are encouraged to use automated methods rather than human-oriented methods to identify and protect PII. Manual identification, extraction, and obfuscation of PII can be a slow, error-prone, and resource-intensive process. Automated methods may include field-level data validation using permitted values lists, searching for PII using pattern matching techniques such as regular expressions, and performing operations that de-identify, mask, and anonymize data containing PII. The degree of automation that can be achieved will vary based on factors such as the structure, complexity, and sensitivity of the information.

Organizations should also implement safeguards to protect intellectual property and other proprietary information from unauthorized disclosure. The disclosure of such information could result in financial loss, violate NDAs or other sharing agreements, be cause for legal action, or damage an organization's reputation. Organizations should have a plan in place to address the unauthorized or inadvertent disclosure of CUI. The plan should cover containment, control, and recovery procedures; breach notification requirements, and post-incident activities such as capturing lessons learned.

The table below introduces selected types of threat information, provides examples of sensitive data that may be present in these types of threat information, and offers general recommendations for handling such data.

Type of Threat Information	Examples of Sensitive Data	Recommendations
	Elements	
Network Indicators	Any single network indicator	Focus on the exchange of
	can be sensitive, but network	network indicators such as
	indicators in the aggregate	destination IP addresses
	are often more sensitive	associated with an actor's
	because they can reveal	command and control
	relationships between	infrastructure, malicious
	network entities. By studying	URLs/domains, and staging
	these relationships it may be	servers.
	possible to infer the identity	
	of users, gather information	Before sharing, anonymize or
	about the posture of devices,	sanitize network indicators

	perform network	that contain IP or MAC
	reconnaissance, and	addresses of target systems
	characterize the security	or addresses registered to
	safeguards and tools that an	your organization. Also
	organization uses.	anonymize or sanitize
		indicators that may reveal the
		structure of internal
		networks, or ports or
		protocols that identify
		particular products.
Packet Capture (PCAP)	In addition to the network	PCAP files can be
	indicators previously	challenging because network
	discussed, unencrypted or	indicators may be present
	decrypted packets may	within both the packet header
	contain authentication	and the payload. For
	credentials and sensitive	example, PCAP files may
	organization information,	show protocols (e.g., DHCP,
	such as PII, CUI or other	Address Resolution Protocol
	types of sensitive	(ARP), File Transfer
	information.	Protocol (FTP), DNS) and
		applications operating at
		multiple layers within the
		network stack. These
		protocols and applications
		generate network information
		that may be captured within
		PCAP files and may require
		sanitization or anonymization
		to prevent sensitive
		information leakage.
		Filter PCAP files before
		sharing by extracting only
		those packets that are related

		to the investigation of a
		to the investigation of a
		specific incident or pattern of
		events:
		•Related to a particular
		network conversation (i.e.,
		exchange of information
		between specific IP addresses
		of interest);
		•Occurring during a chosen
		time period;
		•Destined for, or originating
		from, a specific port; or
		•Use of a particular network
		protocol.
		Redact payload content that
		contains PII, CUI or other
		types of sensitive information
		that is not relevant for
		characterizing the incident or
		event of interest.
		When anonymizing or
		redacting network
		information, use a strategy
		that preserves enough
		information to support
		meaningful analysis of the
		resulting PCAP file contents.
Network Flow Data	Network flow data contains	Before sharing network flow
	information such as:	data, organizations should
	•Source IP address (i.e.,	consider redacting portions
	thesender),	of session histories using
	•Destination IP address (i.e.,	cryptography-based, prefix-
1	1	1

	the recipient),	preserving, IP address
	•Port and protocol	anonymization techniques to
	information,	prevent network
	•Byte counts, and	identification or to conceal
	•Timestamps.	specific fields within the
	If not effectively	session trace (e.g., time
	anonymized, network flow	stamps, ports, protocols, or
	data may make identification	byte counts). To gain the
	of specific users possible,	greatest value from the
	provide insights into user	information, use a tool that
	behavior (e.g., web sites	transforms network flow data
	visited), expose application	without breaking referential
	and service usage patterns, or	integrity. Network flow
	reveal network routing	analysis and correlation
	information and data	operations often require that
	volumes.	IP address replacement and
		transformation operations are
		performed consistently
		within and sometimes across
		multiple files.
		Anonymization techniques
		that do not use a consistent
		replacement strategy may
		reduce or eliminate the value
		of sharing this type of
		information.
Phishing Email Samples	Email headers may contain	Organizations should
	information such as:	anonymize email samples
	• Mail agent IP addresses,	and remove any sensitive
	• Host or domain names, and	information that is not
	• Email addresses.	necessary for describing an
	An email message body may	incident or event of interest.
	also contain PII, CUI, or	
	other types of sensitive	

	information.	
System, Network, and	Log files may contain PII,	Organizations should
Application Logs	CUI or other types of	perform IP address,
	sensitive information. Log	timestamp, port, and protocol
	data may reveal IP addresses,	anonymization and remove
	ports, protocols, services, and	any sensitive information that
	URLs, as well as connection	is not necessary for
	strings, logon credentials,	describing an incident or
	portions of financial	event of interest. Before
	transactions, or other	sharing log data, it may also
	activities captured in URL	be necessary to sanitize
	parameters.	URLs that contain
		identifying information such
		as session or user identifiers.
		Application logs may require
		redaction and anonymizing
		operations that are specific to
		particular application log
		formats.
Malware Indicators and	Although organizations are	Organizations should remove
Samples	unlikely to encounter	PII, CUI, and other types of
	sensitive information in	sensitive information that is
	malware indicators or	not necessary for describing
	samples, sensitive	an incident or event of
	information may be present	interest.
	depending on how targeted	
	the malware is and what	
	collection methods were used	
	to gather a sample.	

Table 2 Handling Recommendations for Selected Types of Sensitive Data

5.3 Sharing Designations

A variety of methods exist to designate handling requirements for shared threat information. These designations identify unclassified information that may not be suitable for public release and that may require special handling. A designation applied to threat information can communicate specific handling requirements and identify data elements that are considered sensitive and should be redacted prior to sharing. Organizations are encouraged to provide clear handling guidance for any shared threat information. Likewise, recipients of threat information should observe the handling, attribution, dissemination, and storage requirements expressed in the source organization's handling guidance.

The Traffic Light Protocol (TLP), depicted in the below table, provides a framework for expressing sharing designations.

Colour	When should it be used?	How may it be used?
	Sources may use TLP:RED when	Recipients may not share
	information cannot be effectively acted	TLP:RED information with
DED	upon by additional parties, and could	any parties outside of the
RED	lead to impacts on a party's privacy,	specific exchange, meeting,
	reputation, or operations if misused.	or conversation in which it is
		originally disclosed.
	Sources may use TLP:AMBER when	Recipients may only share
	information requires support to be	TLP:AMBER information
	effectively acted upon, but carries risks	with members of their own
AMBER	to privacy, reputation, or operations if	organization who need to
	shared outside of the organizations	know, and only as widely as
	involved.	necessary to act on that
		information.
	Sources may use TLP:GREEN when	Recipients may share
	information is useful for the awareness	TLP:GREEN information
	of all participating organizations as well	with peers and partner
GREEN	as with peers within the broader	organizations within their
	community or sector.	sector or community, but not
		via publicly accessible
		channels.

	Sources may use TLP:WHITE when	TLP:WHITE information
	information carries minimal or no	may be distributed without
WHITE	foreseeable risk of misuse, in accordance	restriction, subject to
	with applicable rules and procedures for	copyright controls.
	public release.	

 Table 3 Traffic Light Protocol, Version 1.0

The TLP specifies a color-coded set of restrictions that indicate which restrictions apply to a particular record. In the TLP, red specifies the most restrictive rule, with information sharable only in a particular exchange or meeting, not even within a participant's own organization. The amber, green, and white color codes specify successively relaxed restrictions.

For some threat information, collection methods may be considered confidential or proprietary, but the actual indicators observed may be shareable. In such cases, an organization may want to use *tear line reporting*, an approach where reports are organized such that information of differing sensitivity is not intermingled (e.g., the indicator information is presented in a separate part of the document than the collection methods). Organizing a report in this manner allows an organization to readily produce a report containing only information that designated recipients are authorized to receive.

An organization should carefully choose, or formulate, an approach for expressing sharing designations. Regardless of how an organization expresses sharing designations, the procedures for applying designations to threat information should be documented and approved, and the personnel responsible for assigning such designations properly trained.

5.4 Cyber Threat Information Sharing and Tracking Procedures

Over time, an organization's cybersecurity activities can result in the accumulation of large quantities of threat information from various sources, both internal and external. Though challenging, tracking of data sources is important both for protecting information owners and for ensuring that consuming organizations can meet their legal or regulatory commitments for data protection. Organizations should also preserve the provenance of data by tracking who provided the information and how the information was collected, transformed, or processed, information that is important for drawing conclusions from shared information.

An organization should formulate procedures that allow prompt sharing of threat information while at the same time satisfying its obligations for protecting potentially sensitive data. The procedures should, to the extent possible, balance the risks of possibly ineffective sharing against the risks of possibly flawed protection. An organization's information sharing and tracking procedures should:

- Identify threat information that can be readily shared with trusted parties.
- Establish processes for reviewing, sanitizing, and protecting threat information that is likely to contain sensitive information.
- Develop plan for addressing leakage of sensitive data.
- Automate the processing and exchange of threat information where possible.
- Describe how information handling designations are applied, monitored, and enforced.
- Accommodate non-attributed information exchange, when needed.
- Track internal and external sources of threat information.

The procedures should describe the roles, responsibilities, and authorities (both scope and duration) of all stakeholders. The procedures should allow for the effective transfer of authority and flow of shared information to key decision makers and should enable collaboration with approved external communities when needed.

6.0 Conclusion

The effective usage of CTI is instrumental for defending against continually changing threats. CTI simply refers to the information about adversaries and their motivation, intentions and methods which is collected, analyzed and disseminated in ways that help security and business staff at all levels protect critical assets of their organizations. However, with the rapidly changing threat landscape, CTI must be acted on quickly to receive its full value.

- www.nist.gov
- www.fireeye.com
- www.sans.org